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Critical Infrastructures (CI)

!Provide essential supplies
o Electricity, water, transport, telecom,

finance, …
!Large extension, multiple organizations
!These infrastructures are interconnected

o Cascading failures
o Escalading failures
o Ex. North America black-out (Aug. 2003)

" Bug in monitoring S/W + minor H/W failure ->
loss: 7 to 14 US$ billions



Example: European Electric Grid

! Deregulated market
! Heterogeneous

organizations:
o Generation
o Transmission
o Distribution

! No global authority
! Cooperation &

competition

Critical Information Infrastructure

!Each Critical Infrastructure (CI)
is controlled by an underlying
Critical Information Infrastructure
(CII)
o Computing Systems (e.g., SCADA,

management information systems, …)
interconnected through Networks

o As critical as the CI itself
" Plausible target for cyber-attacks

• Ex. Stuxnet



Typical CII

CII Security
!Combination of good security practices

o Security policies: properties + rules
o Enforcement: authentication + AC mechanisms
o Monitoring and Audit

!CII security requirements
o Secure cooperation without a global authority
o Autonomy, confidentiality, responsibility
o Monitoring --> collection of evidence
o Flexibility and scalability

How to manage security in multiple organizations?



Centralized vs. peer-to-peer

!Centralized:
o Global security policy
o Enforced by each cooperating organization

" Requires adaptation of local policies
o Global monitoring

o Incompatible with autonomy and flexibility
requirements

!Peer-to-peer
o Each organization defines and enforces its

own security policy
o For cooperation, each organization

incorporates entities from other
organizations (users or roles, objects, …)
" Security policy consistency ?
" Autonomy and sovereignty ?
" Confidentiality ?
" Flexibility and scalability ?

Centralized vs. peer-to-peer



PolyOrBAC proposal

!Each organization defines and enforces
its own security policy
o Protects its assets by its own means
o Is responsible for its users with respect to

the other organizations
!Interactions between organizations

through Web Services
o Point-to-point agreement between the

service provider and the service client
o Service interface is incorporated within

the provider and the client policies

Local security policy

!OrBAC model
o Abstractions

" Users --> Roles
" Objects --> Views
" Actions --> Activities

o Policy definition
" Permission, prohibition, obligation rules

expressed on abstract entities
o Enforcement

" At the interaction between concrete entities
(users, actions, objects)
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Interactions between organizations

!Web Services
o Platform independent protocols & standards:

XML, SOAP, WSDL, UDDI
o Integration within local OrBAC policies

" For the service provider: the client organization
is viewed as a “virtual user”

" For the service client: the service invocation is an
action on a local “service-image object”



Virtual users and WS-images
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Publication of a Web Service
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e-Contract

Negotiation

e-Contract

!Describes the agreed service
o Functionality and time constraints (QoS), payment,

penalty if service failure or abuse
" The client organization is liable for its users

(authentication, access control)
" The provider is liable for the service (compliance with the

contract)
o Agreed security rules

" Permissions, Prohibitions, Obligations
" Consistency checked when signing the contract (static)
" Rules enforced at run-time, with collection of evidence if

a rule is violated
# formal representation:

1 Timed-automaton on each side of the WS



Timed automata model
! Permissions = transitions between states,

triggered by a valid WS message or by a local event

! Prohibitions
o Implicit: no transition
o Explicit: transitions to “failure states”

! Obligations
o “Internal obligations” = transition automatically triggered by

local events (guarded by time-out)
o “External obligations” = those that must be realized by the other

party, guarded by a local time-out:
if a proof of achievement is not received before the time-out -->
transition to an exception (obligation)

Ex: Emergency scenario in electric grid

WAN Transmission
Control Center

Distribution
Control Center
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Experiment (simulation)
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Experiment (simulation)

Implementation
! 7 Web-Services (including simulated signals and

measures), 4 users (TSO, DSO, + 2 low privilege users)

! 2 timed automata per WS, static verification of
contracts (UPAAL)

! Operational code for 1 TCC (incl. Control Panel), 1 DCC
(incl. Control Panel), 1 TSS, 4 DSS : WS execution,
access control (OrBAC)

!  7 CIS (firewall, secure channels), interception of WS
exchanges (messages) --> run-time model-checking

! One experiment control panel (configuration,
experiment management, injection of external attacks)



Conclusion

!Autonomy, by local security provision
o Each organization protects its own assets
o Each organization is liable for its users

!Secure cooperation
o Web Services, e-Contracts, run-time verification

!Monitoring and audit
o Collection of evidence: message logs

!Scalability
o Point-to-point => complexity O(n) instead of O(n2)
o Very simple timed automata


