
Protecting Critical Infrastructures
While Preserving

Each Organization’s Autonomy

Yves Deswarte
deswarte@laas.fr

Toulouse, France

Critical Infrastructures (CI)

!Provide essential supplies
o Electricity, water, transport, telecom,

finance, …
!Large extension, multiple organizations
!These infrastructures are interconnected

o Cascading failures
o Escalading failures
o Ex. North America black-out (Aug. 2003)

" Bug in monitoring S/W + minor H/W failure ->
loss: 7 to 14 US$ billions

Example: European Electric Grid

! Deregulated market
! Heterogeneous

organizations:
o Generation
o Transmission
o Distribution

! No global authority
! Cooperation &

competition

Critical Information Infrastructure

!Each Critical Infrastructure (CI)
is controlled by an underlying
Critical Information Infrastructure
(CII)
o Computing Systems (e.g., SCADA,

management information systems, …)
interconnected through Networks

o As critical as the CI itself
" Plausible target for cyber-attacks

• Ex. Stuxnet

Typical CII

CII Security
!Combination of good security practices

o Security policies: properties + rules
o Enforcement: authentication + AC mechanisms
o Monitoring and Audit

!CII security requirements
o Secure cooperation without a global authority
o Autonomy, confidentiality, responsibility
o Monitoring --> collection of evidence
o Flexibility and scalability

How to manage security in multiple organizations?

Centralized vs. peer-to-peer

!Centralized:
o Global security policy
o Enforced by each cooperating organization

" Requires adaptation of local policies
o Global monitoring

o Incompatible with autonomy and flexibility
requirements

!Peer-to-peer
o Each organization defines and enforces its

own security policy
o For cooperation, each organization

incorporates entities from other
organizations (users or roles, objects, …)
" Security policy consistency ?
" Autonomy and sovereignty ?
" Confidentiality ?
" Flexibility and scalability ?

Centralized vs. peer-to-peer

PolyOrBAC proposal

!Each organization defines and enforces
its own security policy
o Protects its assets by its own means
o Is responsible for its users with respect to

the other organizations
!Interactions between organizations

through Web Services
o Point-to-point agreement between the

service provider and the service client
o Service interface is incorporated within

the provider and the client policies

Local security policy

!OrBAC model
o Abstractions

" Users --> Roles
" Objects --> Views
" Actions --> Activities

o Policy definition
" Permission, prohibition, obligation rules

expressed on abstract entities
o Enforcement

" At the interaction between concrete entities
(users, actions, objects)

Organization

OrBAC

Organization

Role

Activity

ViewPermission

Prohibition

Obligation

OrBAC

Organization

Role

Activity

View

Context

Permission

OrBAC

Organization

Role

Activity

View

Context

Permission

!"#$%&'$
()*)(

OrBAC

Organization

Role

Activity

View

Context

Permission

!"#$%&'$
()*)(

Subject

Action

Object

+,-'%)$)
()*)(

OrBAC

Organization

Role

Activity

View

Context

Permission

!"#$%&'$
()*)(

Subject

Action

Object

+,-'%)$)
()*)(

OrBAC

Organization

Role

Activity

ViewPermission

!"#$%&'$
()*)(

Subject

Empowers

Considers

Action

Uses

Object

+,-'%)$)
()*)(

OrBAC

Context

Policy

Organization

Role

Activity

ViewPermission

!"#$%&'$
()*)(

Subject

Empowers

Considers

Action

Uses

Object

+,-'%)$)
()*)(

OrBAC

Is
permitted

Context

Policy

Organization

Role

Activity

ViewPermission

!"#$%&'$
()*)(

Subject

Empowers

Considers

Action

Uses

Object

+,-'%)$)
()*)(

OrBAC

Is denied

Context

Policy

Interactions between organizations

!Web Services
o Platform independent protocols & standards:

XML, SOAP, WSDL, UDDI
o Integration within local OrBAC policies

" For the service provider: the client organization
is viewed as a “virtual user”

" For the service client: the service invocation is an
action on a local “service-image object”

Virtual users and WS-images

Users Objects

Organization 2
(WS-provider)

Organization 1
(WS-client)

Users
Objects VU

WS-image

!"

Publication of a Web Service

Users Objects

Organization 2
(WS-provider)

Organization 1
(WS-client)

Users
Objects

!"

UDDI
WSDLWSDL

Publication of a Web Service

Users Objects

Organization 2
(WS-provider)

Organization 1
(WS-client)

Users
Objects

!"

VU

WS-image

e-Contract

Negotiation

e-Contract

!Describes the agreed service
o Functionality and time constraints (QoS), payment,

penalty if service failure or abuse
" The client organization is liable for its users

(authentication, access control)
" The provider is liable for the service (compliance with the

contract)
o Agreed security rules

" Permissions, Prohibitions, Obligations
" Consistency checked when signing the contract (static)
" Rules enforced at run-time, with collection of evidence if

a rule is violated
formal representation:

1 Timed-automaton on each side of the WS

Timed automata model
! Permissions = transitions between states,

triggered by a valid WS message or by a local event

! Prohibitions
o Implicit: no transition
o Explicit: transitions to “failure states”

! Obligations
o “Internal obligations” = transition automatically triggered by

local events (guarded by time-out)
o “External obligations” = those that must be realized by the other

party, guarded by a local time-out:
if a proof of achievement is not received before the time-out -->
transition to an exception (obligation)

Ex: Emergency scenario in electric grid

WAN Transmission
Control Center

Distribution
Control Center

Generation
Control Center

Distribution
CC

Transmission
CC

Transmission
Substation Distribution

Substation

#"$ %"$

3. Signals and Measurements

1.
 S

ig
na

ls
 a

nd

 M
ea

su
re

m
en

ts

Distribution
CC

Transmission
Substation

#"$ %"$

Normal operation

2.
 S

ig
na

ls
 a

nd
M

ea
su

re
m

en
ts

Distribution
Substation

Transmission
CC

Distribution
CC

Transmission
Substation

4. Arm for x MW load (WS1)

#"$ %"$

Distribution
Substation

Prepare for possible load shedding

Transmission
CC

Distribution
CC

Transmission
Substation

5.
A

rm
in

g/
di

sa
rm

.

 (W
S

2)

#"$ %"$

Distribution
Substation

Prepare for possible load shedding

Transmission
CC

Ready for load shedding

Transmission
Substation

#"$ %"$

6.
 A

ck
 (W

S
2)

Distribution
Substation

Distribution
CC

Prepare for possible load shedding

Transmission
CC

Transmission
Substation

5.
A

rm
in

g/
di

sa
rm

.

 (W
S

2)

#"$ %"$

Distribution
Substation

Distribution
CC

Prepare for possible load shedding

Transmission
CC

Transmission
Substation

#"$ %"$

Distribution
Substation

Ready for load shedding

6.
 A

ck
 (W

S
2)

Distribution
CC

Prepare for possible load shedding

Transmission
CC

Transmission
Substation

#"$ %"$

7. Ack for armed x MW (WS1)

Distribution
Substation

Distribution
CC

Prepare for possible load shedding

Transmission
CC

Transmission
Substation

%"$#"$

7.
P

re
pa

re
 L

S
 W

S
3

Distribution
Substation

Distribution
CC

Prepare for possible load shedding

Transmission
CC

8. Load Shedding (WS4)Transmission
Substation

%"$#"$

Emergency

Distribution
Substation

Distribution
CC

Transmission
CC

37&'()*+(),
UV4

WS4WS4-image MCDTU

WS1

WS2

DSO

WS1-image

DS CCTS CC

TS SS

DS SS

WS3-image

WS3

WS2-image

TSO

VU1

VU2

VU4

VU3

TS CC DS CC

Run-time model checking: WS1

Normal

Waiting for
arming ack

Failure
(no ack)

Ready for
Load shedding

Waiting for
disarming ack

Failure
(no ack)

Arming_request!

Arming_request
ack? Time_out?

Disarming_request!

Time_out?

Normal

Waiting for
SS armed acks

Ready for
Load shedding

Waiting for
SS disarmed acks

Arming_request?

Arming_request
Ack!

Disarming_request?

Disarming_request
Ack!

TS CC DS CC

Run-time model checking: WS1

Normal

Waiting for
arming ack

Failure
(no ack)

Ready for
Load shedding

Waiting for
disarming ack

Failure
(no ack)

Arming_request!

Arming_request
ack? Time_out?

Disarming_request!

Time_out?

Normal

Waiting for
SS armed acks

Ready for
Load shedding

Waiting for
SS disarmed acks

Arming_request?

Arming_request
Ack!

Disarming_request?

Disarming_request
Ack!

TS CC DS CC

Run-time model checking: WS1

Normal

Waiting for
arming ack

Failure
(no ack)

Ready for
Load shedding

Waiting for
disarming ack

Failure
(no ack)

Arming_request!

Arming_request
ack? Time_out?

Disarming_request!

Time_out?

Normal

Waiting for
SS armed acks

Ready for
Load shedding

Waiting for
SS disarmed acks

Arming_request?

Arming_request
Ack!

Disarming_request?

Disarming_request
Ack!

TS CC DS CC

Run-time model checking: WS1

Normal

Waiting for
arming ack

Failure
(no ack)

Ready for
Load shedding

Waiting for
disarming ack

Failure
(no ack)

Arming_request!

Arming_request
ack? Time_out?

Disarming_request!

Time_out?

Normal

Waiting for
SS armed acks

Ready for
Load shedding

Waiting for
SS disarmed acks

Arming_request?

Arming_request
Ack!

Disarming_request?

Disarming_request
Ack!

TS CC DS CC

Run-time model checking: WS1

Normal

Waiting for
arming ack

Failure
(no ack)

Ready for
Load shedding

Waiting for
disarming ack

Failure
(no ack)

Arming_request!

Arming_request
ack? Time_out?

Disarming_request!

Time_out?

Normal

Waiting for
SS armed acks

Ready for
Load shedding

Waiting for
SS disarmed acks

Arming_request?

Arming_request
Ack!

Disarming_request?

Disarming_request
Ack!

TS CC DS CC

Run-time model checking: WS1

Normal

Waiting for
arming ack

Failure
(no ack)

Ready for
Load shedding

Waiting for
disarming ack

Failure
(no ack)

Arming_request!

Arming_request
ack? Time_out?

Disarming_request!

Time_out?

Normal

Waiting for
SS armed acks

Ready for
Load shedding

Waiting for
SS disarmed acks

Arming_request?

Arming_request
Ack!

Disarming_request?

Disarming_request
Ack!

Experiment (simulation)

DS CCTS CC

TS SS

DS SS DS SS DS SSDS SS

Experiment (simulation)

DS CCTS CC

TS SS

DS SS DS SS DS SSDS SS

1 physical computer
(4 virtual machines)

1 physical computer
(10 virtual machines)

Experiment (simulation)

DS CC

DS SS DS SS DS SSDS SS

1 physical computer
(10 virtual machines)

Experiment (simulation)

Implementation
! 7 Web-Services (including simulated signals and

measures), 4 users (TSO, DSO, + 2 low privilege users)

! 2 timed automata per WS, static verification of
contracts (UPAAL)

! Operational code for 1 TCC (incl. Control Panel), 1 DCC
(incl. Control Panel), 1 TSS, 4 DSS : WS execution,
access control (OrBAC)

! 7 CIS (firewall, secure channels), interception of WS
exchanges (messages) --> run-time model-checking

! One experiment control panel (configuration,
experiment management, injection of external attacks)

Conclusion

!Autonomy, by local security provision
o Each organization protects its own assets
o Each organization is liable for its users

!Secure cooperation
o Web Services, e-Contracts, run-time verification

!Monitoring and audit
o Collection of evidence: message logs

!Scalability
o Point-to-point => complexity O(n) instead of O(n2)
o Very simple timed automata

